
Tips for Running and Tuning Programs
on Cray XC Systems with KNL
Heidi Poxon

Cobalt Batch System on Theta

2

EXAMPLE:

qsub –n 2 –t 15 --mode script –A Theta_ESP –q cache-quad --env OMP_NUM_THREADS=16 \
 ./runScript

qsub –n <number of nodes> -t <wallclock time> --mode script –A <project(allocation)> \
 -q <queue> --env <var1=value1:var2=value2….> myScriptFile

#!/bin/bash –evx
Command line options will override the three settings below:
#COBALT -t 5
#COBALT -q cache-quad
#COBALT --project Theta_ESP
export n_nodes=$COBALT_JOBSIZE
export n_ranks_per_node=64
export n_mpi_ranks=$(($n_nodes * $n_ranks_per_node))
aprun --env CRAY_OMP_CHECK_AFFINITY=TRUE --env OMP_NUM_THREADS=4 \
 -n $n_mpi_ranks -N $n_ranks_per_node -cc depth -d 4 -j 4 ./x_hello_world_mpi_openmp

man	qsub	

Script	
Example	

To simplify the aprun
command, set

environment variables
within script

Theta ESP Hands-on Workshop Notes

3

¤  All Intel Tuning Guides:
http://software.intel.com/en-us/articles/processor-specific-performance-analysis-papers

Theta ESP Hands-on Workshop Notes

4

¤  Theta hardware specifics:

¥ 3240 nodes

¥  Intel Xeon Phi 7230 (16GB MCDRAM, 1.30 GHz, 64 core)

¡  http://ark.intel.com/products/94034/Intel-Xeon-Phi-Processor-7230-16GB-1_30-GHz-64-core

¡  192 GB DDR4 DRAM

¡  128 GB node-local SSD

¡  32 MB L2 cache

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Compile / Link Using Cray Compiler

ALCF Theta ESP Workshop Cray Inc. Proprietary © 2016 5

●  > module swap PrgEnv-intel PrgEnv-cray

●  > module load craype-mic-knl

●  > cc –o a.out my_c_code.c
●  > CC –o a.out my_c++_code.cpp
●  > ftn –o a.out my_fortran_code.f90

● Check affinity by setting environment variable:
●  export CRAY_OMP_CHECK_AFFINITY=TRUE

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Using CMake and GNU Autotools on Cray Systems

ALCF Theta ESP Workshop Cray Inc. Proprietary © 2016 6

● See the Tips document:

http://docs.cray.com/books/S-2801-1608//S-2801-1608.pdf

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Experimenting with MCDRAM

ALCF Theta ESP Workshop Cray Inc. Proprietary © 2016 7

●  Try the following from least to most effort
1.  Run in 100% cache mode

●  Captures reuse, simplest, will just work

2.  Run in quad, flat mode but don’t allocate into MCDRAM
●  How sensitive is program to MCDRAM

3.  Check if program fits in MCDRAM
●  Use numactl or memory high water mark info from perftools-lite
●  Best way to run if code fits

4.  Use a combination of MCDRAM and DDR using numactl
●  Also simple, but may not allocate “the right” data in MCDRAM

5.  Allocate bandwidth intensive arrays in MCDRAM
●  The most effort, need to identify which arrays to allocate

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Allocating in MCDRAM or DDR in Flat Mode

ALCF Theta ESP Workshop Cray Inc. Proprietary © 2016 8

● Allocate out of MCDRAM
●  > aprun . . . numactl --membind=1 a.out

● Allocate out of DDR
●  > aprun . . . numactl --membind=0 a.out

● Allocate out of MCDRAM until exhausted
●  > aprun . . . numactl --preferred=1 a.out

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

aprun Example Using Intel

ALCF Theta ESP Workshop Cray Inc. Proprietary © 2016 9

●  $ KMP_AFFINITY=none \
 OMP_NUM_THREADS=2 \
 aprun –n 1020 –N 32 –d2 –j1 –cc depth a.out

●  -n = --pes == number of MPI ranks

●  -N = --pes-per-node == number of ranks per node

●  -d = --cpus-per-pe == separation between ranks;
depth

●  -j = --CPUs == number of Hyper-Threads per
physical core

●  -cc = --cpu-binding == CPU affinity binding

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

aprun Examples Using GNU or CCE

ALCF Theta ESP Workshop Cray Inc. Proprietary © 2016 10

●  1 node, 4 MPI ranks with 4, 16 or 64 OpenMP threads

●  $ OMP_NUM_THREADS=4 aprun –n 4 –d 4 –j1

●  $ OMP_NUM_THREADS=16 aprun –n 4 –d 16 –j1

●  $ OMP_NUM_THREADS=64 aprun –n 4 –d 64 –j4
●  This example requires using 4 hyperthreads

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

More aprun Examples

ALCF Theta ESP Workshop Cray Inc. Proprietary © 2016 11

●  1 node, 256 MPI ranks, no OpenMP threads, 4 ranks per
core
●  $ aprun –n 256 –j4

●  1 node, 128 MPI ranks, 2 hyperthreads threads per rank, 2
OpenMP threads per rank
●  $ OMP_NUM_THREADS=2 aprun –n 128 –d 2 –j4

●  1 node, 16 MPI ranks, 4 hyperthreads per core, 16 OpenMP
threads per rank
●  $ OMP_NUM_THREADS=16 aprun –n 16 –d 16 –j4

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Guidance on Hyper-Threading

ALCF Theta ESP Workshop Cray Inc. Proprietary © 2016 12

●  There does not seem to be any reasonable predictor if
Hyper-Threading (HT) will be better or not
●  But when it is better, HT=2 often seems the best

● While HT may help with hiding latency, it also can
significantly increase pressure on all levels of cache

●  Try it out and see what is best

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Using Core Specialization

ALCF Theta ESP Workshop Cray Inc. Proprietary © 2016 13

●  Offloads some kernel and MPI work to unused Hyper-Thread(s)

●  Good for large jobs and latency sensitive MPI collectives

●  Highest numbered unused thread on node is chosen
●  Usually the highest numbered HT on the highest numbered physical core

●  Examples
●  aprun -r 1 …
●  aprun –r N … # use several extra threads

●  Cannot oversubscribe, OS will catch
●  Illegal: aprun -r1 -n 272 -N 272 -j 4 a.out
●  Legal: aprun -r1 -n 271 -N 271 -j 4 a.out
●  Legal: aprun -r8 -n 264 -N 264 -j 4 a.out

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

ALPS Affinity vs KMP_AFFINITY

ALCF Theta ESP Workshop Cray Inc. Proprietary © 2016 14

● Cray ALPS affinity conflicts with Intel ® KMP_AFFINITY
●  aprun affinity and KMP affinity should not be used together

● ALPS default is -cc=cpu which binds each thread to a
core

● Use –cc none to let KMP have control and use
KMP_AFFINITY settings
●  Only works as expected if you have a single MPI rank per node

● Use -d and –cc depth to let ALPS have control and to
take care of helper threads

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

General Guidance

ALCF Theta ESP Workshop Cray Inc. Proprietary © 2016 15

●  Profile your code to minimize time investment and help focus optimizations

●  Too few MPI ranks per node can result in poor performance
●  Too few ranks will likely result in too few cores driving the network
●  The relatively slow cores will not be able to fully utilize the network bandwidth or number of

outstanding references, leaving performance on the table

●  Be very careful with any single node performance studies
●  Performance trends may lead you to believe that higher levels of OpenMP are desirable
●  Single node performance studies do not have any off node component.
●  This may also be the result of simply driving MPI time to zero, which will never happen in a real

multi-node job

●  OpenMP and MPI scaling studies should be done on as many nodes as possible
●  The tradeoffs should be considered at the level of parallelism that you expect to run at

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

General Guidance (2)

ALCF Theta ESP Workshop Cray Inc. Proprietary © 2016 16

●  Try core specialization (-r 1) whenever possible

●  Try using huge pages
●  Especially helpful if you suspect TLB issues or if you are using MPI collectives like MPI_Alltoall()

●  Use MPI defaults
●  Don’t start by setting MPI-related environment variables
●  Defaults are often the best choice

●  If MPI communication is dominant, try rank reordering with CrayPat /
grid_order

●  Do not build with –g when running optimized code or measuring performance

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Vectorization is Important!

ALCF Theta ESP Workshop Cray Inc. Proprietary © 2016 17

● KNL’s overall performance is highly correlated with good,
clean vector code

● Without good to excellent vectorization, the slow scalar
performance will act as a serious drag on overall
performance
●  May extend to “partial vectorization”

●  Loops that are vectorized, but have levels of indirection, non-unit-stride
memory references, or conditionals make vectorization less than clean

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Summary

ALCF Theta ESP Workshop Cray Inc. Proprietary © 2016 18

●  Application scaling studies should be done on as many nodes as
possible

●  Start testing using a moderate number of OpenMP threads and move
up from there, but don’t think you have to go > 32 threads

●  Vectorization is critical to sustaining good performance

●  One must consider how to utilize MCDRAM

●  There is no good guidance for when hyper-threading will help

